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An ensemble of randomly oriented, noninteracting, homogeneous, solid, inelastic, identical hemispheres in
the gravitational field, having dropped on a rigid horizontal plane will order orientationally, most of them
sitting on the vertex of the spherical part rather than on the plane. This state of the ensemble will not have
the lowest possible potential energy, as required for stable equilibrium. This shows several analogies to the
behavior of polymorphic substances on crystallization from a gaseous or liquid phase, which usually first
result in the highest energy solid. The discussion is extended to spherical segments (limited by a single plane)
other than hemispheres. If mutual attraction is present, multiple metastable and stable states of the ensemble
become possible, featuring positional besides orientational order.

Introduction

Polymorphism describes the possibility of a crystalline solid
to take more than one crystalline form.1 Due to the different
arrangements, and hence interactions, of the constituent units,
such forms have different specific energy (or chemical potential)
values and consequently different physicochemical properties.
When a substance proves to be polymorphic, the crystalline form
of each batch produced has to be checked. In fact, the different
solubilities, vapor pressures, and reactivities can give different
physiologic effects and hence permit new patents to be made,
if it is a pharmaceutical or agrochemical,2 can give different
color nuances if it is a dye,3 and different sensitivity if it is an
explosive.4

Polymorphism is conveniently distinguished into two classes:
enantiotropic and monotropic.5 The former refers to the case in
which each phase has a defined range of stable existence, such
as the orthorhombic and monoclinic phases of sulfur. Under
atmospheric pressure,6 the orthorhombic phase is stable from
the lowest attainable temperatures up to 94.5°C, where it
converts (slowly but reversibly) into the monoclinic phase,
which is stable from this temperature up to its melting point at
115 °C.7

Monotropic polymorphism (or allotropism) occurs when one
or more phases are always less stable (more energetic) than
others in the given temperature range. A common example is
diamond, which is always less stable than graphite under
temperature and pressure ranges in which humans can exist,
but inalterable there due to the height of the energetic barrier
necessary to reorder the constituent atoms. Monotropism and
enantiotropism are not mutually exclusive; for instance sulfur
hasalsoseveralmetastablemonotropes (“allotropes”).8 Despite
the lower thermodynamic stability, the monotropic phases form
due to a more favorable kinetics in the conditions of crystal-
lization, and often persist (like diamond) in the metastable state
due to the slowness, or inhibition, of the transformation. The
“conditions of crystallization” may be very complex and poorly
defined, including the “spooky” presence of unnoticed crystal
seeds,9 heats of mixing, peculiar or “orienting” solvents,10

narrowly delimited values of temperature, pressure, concentra-
tions, and of their gradients.

There is a generally applicable rule, “the Ostwald’s rule of
stages” which asserts that in the case of monotropism the first
crystal formed is the least stable.11 While the macroscopic
aspects of the Ostwald step rule are aptly discussed by
thermodynamic methods,12 a simple, purely mechanical model
shows a behavior presenting a striking analogy to the crystal-
lization of a monotropic substance. The approximations required
to assimilate a molecular liquid and crystal to ensembles of
purely mechanical objects may make the model to appear
unsuitable to analyze the behavior of an ensemble of molecules
undergoing crystallization. But this very abstraction allows clear
distinctions to be made, whereas real systems present compli-
cated properties and behavior. It is then advantageous to turn
to more convenient models. A well-known, successful example
of such a procedure, is the mechanical modeling of viscoelastic
systems.13

Below I discuss the bidimensional ordering of an ensemble
of hemispheres, first under the influence of gravity alone and
then in the presence of gravity and slight attractive forces. Their
effects mimic the characteristic behavior of a polymorphic
substance on crystallization.

The Mechanical Model: Independent Hemispheres.A
large but finite number of independent, solid, homogeneous,
inelastic, identical hemispheres, in random initial orientation
and position, is allowed to drop gradually in the field of gravity
on a lower, rigid, unlimited, horizontal planeR. In this athermal
system, the single direction gravitational forces schematize the
tendency of the liquid or gas phase molecules to “fall” on the
crystal surface when the temperature is lowered below the
equilibrium value, and the gravitational energy is analogous to
an appropriate thermodynamic potential of a real macroscopic
system. Only a minority of the hemispheres will take the most
stable position, the one where the center of mass (com) is in
the lowest possible position, which requires the plane face to
contactR. Most will sit on the point of the hemisphere farthest
from the plane surface, which is the vertex, point B of Figure
1. The process has orientationally ordered the ensemble, but to
a metastable state, not the most stable one.
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A possible objection to the analogy is that the process has
not oriented the entire system, giving the analogue of a crystal,
but only a part of it, giving the analogue of a disordered crystal.
But it is well known14 that any cluster of real molecules,
inclusive of those organized as an incipient new phase, tends
to disappear below a critical size, and only when larger tends
to grow. If a certain organization is more probable than others,
the critical cluster size, or crystal seed, will be reached first by
that arrangement, which will enlarge, while the other will
disappear.

Let us now see why a single, perfectly inelastic, solid
hemisphere will tend to end on its vertex when dropped on an
horizontal planeR. First we seek the com M of a hemisphere,
because its gravitational energy depends on the distance of the
com from R. Figure 1 shows a section of the hemisphere of
diameter 2R through the unique radius CB perpendicular to its
planar part. Because the line through C and B is a symmetry
axis, which we callx, M must stay between C and B. To find
its position, cut the hemisphere into slices, of thickness dx and
perpendicular tox. Each circular slice contributes an infinitesi-
mal mass

(whereF is the density,V the volume, andA the area of the
slice), which can be thought to be concentrated in a single point
at its center, which is on CB. The distance of M from C, where
x ) 0 is

Thus, if the initial orientation of the hemispheres is random,
the probabilityP that each one may land on the plane face is
given by

or less than 1/3. If a hemisphere were somewhat (imperfectly)
elastic, its final orientation would depend on the elastic
coefficient and the initial height with respect to the plane.
However, if the rebounds did not modify the randomness of
orientation but were sufficient to allow reorientation of the
hemisphere, all those which can collide more than one time
with R would have each time a probability of less than 1/3 to
reach the most stable state.

Defining asâ the angle between the oriented segment CfB
andn, an oriented normal out ofR, see Figure 1, the diagram
of the gravitational potential energy (proportional to the height
h of M from R) of a single hemisphere as a function ofâ is
shown in Figure 2. Initially letâ ) 0°, so thath is at its absolute
minimum value of (3/8)R ) 0.375R. As soon asâ starts
increasing, the hemisphere rotates anticlockwise, pivoting on a
point of its edge, like D of Figure 1, andh increases as

reaching a maximum (top of the energy barrier, unstable
equilibrium) of 1.068R for â ) 69.444°. Fromâ ) 69.444° to
90°, h decreases, reaching the value ofR for â ) 90°.

For 90° e â e 180°, the contact point withR, through which
the instantaneous axis of rotation (which lies onR) passes,
moves on a maximum circle on the spherical surface. The type
of point of contact withR has changed, and so does the
expression ofh, which is now given by

Its value decreases further, until it reaches a relative minimum
of 5/8R ) 0.625R for â ) 180°, when the hemisphere sits on
B. Due to the symmetry of the hemisphere, the curve represent-
ing the gravitational potential energyVG(â) ) mg h(â) is
symmetrical aboutâ ) 180°. The minimum here is a well-
behaved one, with zero value of the first derivative, whereas
the two absolute minima atâ ) 0° and 360° are end point
extremes,15 with one-sided finite first derivatives of opposite
sign.

A hemisphere in the metastable status on its vertex B may
reach the lowest, stable minimum of potential energy if some
external sourcesvibration of the plane, collision with other
hemispheres, or anything emulating the effect of the thermal
bath on the moleculesswill temporarily supply at least the
differencemgR (1.068 - 0.625) necessary to surmount the
potential barrier.

The first setting of the hemispheres on the plane depends on
probability; the stable one on potential energy, if sufficient
energy to overcome the barrier to reorientation is temporarily
available.

The above model can be generalized by considering a small
set of selected spherical segments, with one of the two planes
(0 in Figure 3) tangent to the spherical surface and the other
(1-5) cutting it at various distances from the former. Their
features are listed in Table 1.

In order to compare the values of the potential energy at
the absolute minimum (forhcom ) a), at the top of barrier (for

Figure 1. Section of a hemisphere by a plane passing through the
unique radius CB, and definition of the angleâ.
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(total solid angle)
)

-2π [cosx]0
θ
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Figure 2. Diagram of the potential energy of a hemisphere in mg
units as a function of the angleâ.

h(â) ) DM sin [arctan (3/8)+ â] )
R [12 + (3/8)2]1/2sin [arctan (3/8)+ â] )

R1.068 sin (20.556+ â) (4)

h(â) ) R - CM sin(â - 90) ) R - 0.375Rsin (â - 90)
(5)
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hcom ) b), and at the relative minimum (forhcom ) c) of the
five spherical segments, it is advantageous to divide the
gravitational energy of each solid in excess of its minimum value
by this minimum value. Since the gravitational energy is
VG(h) ) mgh) gFVR3h, whereV is the volume of the spherical
section divided byR3, these ratios becomeb′ ) (b - a)/a and
c′ ) (c - a)/a, and are listed in Table 1 and shown in Figure
5. Along with the change of form of the solid, from disk-like
(spherical segment 0-1) to sphere-like (spherical segment 0-5),
the relative energy differences decrease, as does the probability
to land in the stable position, as shown in Figure 4.

Other solids are being examined to see whether their
symmetry may entail features that are closer to those of real
molecules.

The Hemispheres Attract Each Other. In normal liquid-
to-solid (or vapor-to-solid) transitions under constant pressure,
crystallization implies a simultaneous ordering of both orienta-
tion (specified for example by the three Euler angles) and
position (fixed for instance by the three Cartesian coordinates

of the com) nature of the elementary entities (polyatomic
molecules, ions, radicals). This is not always the case;16

however, in view of the qualitative nature of the present note
we will consider only this case.

Up to this point the discussion has focused on orientational
ordering of the hemispheres, assuming no interaction among
them, and then avoiding possible positional ordering, because
R was unlimited. Now, suppose that there are arbitrarily small
attractive forcesFA (with a corresponding potential energyVA)
between the hemispheres, or some condition implying equivalent
constraint forces (for instance limitations of accessible surface
on R, presence of a small electric dipole moment along CB).
Then the distances among the coms will tend to reduce until
the rigid units come into contact. The total energy of the
ensemble is necessarily dominated byVG, so possiblestable
states will feature hemispheres with the plane still in contact
with R but arranged to minimize the reciprocal distances.

Two ordered patterns will be elicited, one where the coms
have a rectangular, and the other a triangular arrangement, see
Figure 5a and b, respectively. The area required by each unit
will be (2R)(2R) ) 4 R2 in the former, and (2R)(2R sin 60))
3.464R2 in the latter case.

As to metastable states of the ensemble, we previously
observed that if clusters are present, the first orientation ofall
the hemispheres should be the metastable one, because a cluster
of this type forms first. If there is some attractive force between
pairs of units, two ordered metastable states of the ensemble
may form, of the same type and same area as the stable states
just discussed. But we know that if half of the hemispheres
contactR with its planar part, and half with the vertex B, their
effective radius for surface requirement will decrease toRcos-
(30) ) 0.866R, as shown in Figure 6, and so both for square
and (equilateral) triangle arrangement of the coms. Thus, if 50%
(or 17.56%) 67.56%- 50%, if clusters are not present, and
the orientation depends on probability only) of the units will
change from the gravitationally metastable to the stable position,
two new metastable ordered states of the ensemble become
possible.

Finally, if VA for the ensemble becomes comparable toVG,
the requirement to minimize the distances among the coms may
force the hemispheres to take the gravitationally unstable
orientation with the plane vertical,â ) (90° and a point such
as D or E of Figure 2 in contact withR. Many new patterns
would become possible, but they will not be considered here,
because a feature of the model proposed is the presence of
gravity as the only relevant force acting on the hemispheres.

Figure 3. Projection of selected spherical sections on a plane through
the axis. Roman numbers indicate the tangent (0) and cutting (1-5)
planes; italic ones the centers of mass, shown by dots.

TABLE 1: Features of Selected Spherical Segments

spherical segment 0-1 0-2 0-3 0-4 0-5

V ) volume/R3 0.1799 0.6545 2.0944 3.5343 4.0088
xcom/R 0.8352 0.6750 0.3750 0.1250 0.0375
radius of end circle/R 0.6614 0.8660 1.0000 0.8660 0.6614
θ/degree 82.66 78.57 69.44 54.18 40.02
P ) Ω/4π 0.4361 0.4009 0.3244 0.2074 0.1171
a ) (hcom at abs.min./R) 0.0852 0.1750 0.3750 0.6250 0.7875
b ) (hcom at max./R) 0.6668 0.8835 1.0680 1.0679 1.0280
c ) (hcom at rel.min./R) 0.1648 0.3250 0.6250 0.8750 0.9695
b′ ) (b - a)/a 6.8263 4.0485 1.8480 0.7086 0.3059
c′ ) (c - a)/a 0.9342 0.8571 0.6666 0.4000 0.2222

Figure 4. Relative gravitational energies of different spherical
segments in the stable (a in Table 1), top-of-the-barrier (b), and
metastable (c) orientation.

Figure 5. Top view of a, square; b, equilateral triangle arrangement
of the hemispheres.

Figure 6. Vertical section of the arrangement of two hemispheres in
alternate stable and metastable orientation.
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Conclusion
An ensemble of homogeneous, noninteracting, identical

hemispheres dropped in the field of gravity on a lower rigid
plane shows the separate effects of probability and potential
energy in the determination of the orientation of the solids.
Probability controls the initial, metastable setting, while potential
energy determines the stable, final one, if energy sufficient to
overcome the energy barrier between the two can be borrowed.

If some condition, with a corresponding arbitrarily small
potential energy, directs the hemispheres to reduce their
distances, four metastable and two stable arrangements of the
ensemble become possible.

Even for such a simple unit as a hemisphere, we see that the
presence of forces gives rise naturally to multiple metastable
and stable states of the ensemble.
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